skip to main content


Search for: All records

Creators/Authors contains: "Dietiker, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lischka, A. E. ; Dyer, E. B. ; Jones, R. S. ; Lovett, J. N. ; Strayer, J. ; Drown, S. (Ed.)
    This paper explores how a professional learning community (PLC) redesigns high school mathematics lessons towards a shared commitment. We describe the nature of a PLC’s collective curricular vision to illuminate how teachers can come to new understandings as a group in order to shift the ways students experience mathematics. Using the curricular noticing framework (attending, interpreting, and responding), we analyzed the meetings of a PLC with six teachers as they individually presented lessons to be redesigned with a focus on the group’s shared commitment. Findings indicate three ways ideas were introduced that led to expansive responses, which suggests this analytic approach could identify ways in which a PLC can work towards new curricular decisions. 
    more » « less
  2. Olanoff, D. ; Johnson, K. ; & Spitzer, S. (Ed.)
    In this study, we explore the relationships between the types of student exclamations in an enacted lesson (e.g., “Wow!”) and the varying dramatic tensions created by the unfolding content. By analyzing student exclamations in six specially-designed high school mathematics lessons, we explore how the dynamic tension between revelations of mathematical ideas at the moment and what is yet to be known connects with the aesthetic pull to react by the student. As students work through novel problems with limited information, their joys and frustrations are expressed in the form of exclamations. 
    more » « less
  3. Olanoff, D. ; Johnson, K. ; & Spitzer, S. (Ed.)
    How does the design of lessons impact the types of questions teachers and students ask during enacted high school mathematics lessons? In this study, we present data that suggests that lessons designed with the mathematical story framework to elicit a specific aesthetic response (“MCLEs”) having a positive influence on the types of teacher and student questions they ask during the lesson. Our findings suggest that when teachers plan and enact lessons with the mathematical story framework, teachers and students are more likely to ask questions that explore mathematical relationships and focus on meaning making. In addition, teachers are less likely to ask short recall or procedural questions in MCLEs. These findings point to the role of lesson design in the quality of questions asked by teachers and students. 
    more » « less
  4. Why do secondary students in the US consistently and increasingly report a lack of interest in mathematics? Lack of interest in mathematics has been well documented in TIMSS responses; students dissatisfaction with mathematics more than doubled by 2011, when 40% of 8th graders reported not liking math, up from 18% as 4th graders in 2007. And, sadly, the trend appears to be worsening; in 2015, 47% of 8th graders indicated not liking math, up from 22% as 4th graders. In order to positively impact student attitudes towards mathematics, it is important to understand factors that may influence secondary students’ relationship with the discipline. This poster presents findings from an exploratory study of student disposition toward mathematics. We designed an online survey to learn about students’ relationship with mathematics, including experiences and settings that contribute to both positive and negative feelings about the subject. We surveyed 275 students, grades 9 to 12, in 11 classes in three schools in three New England districts. Though not randomly chosen, this sample allows us to examine student attitudes across a variety of contexts. We asked students about their feelings towards mathematics over the years, as well as which aspects of class they most enjoyed or disliked. Finally, we included items from the TRIPOD survey (Wallace et al., 2016) and the 2015 NAEP survey, which allows us to compare our sample with the national sample. Initial results indicate that student view their teachers and the topics of study as the central factors influencing their enjoyment of mathematics class. We found a correlation between responses that math is boring and that it is not relevant. Students who like math and those who do not reported different class activity preferences. For example, students who like math reported disliking watching a video in class, while students who dislike math reported disliking learning something new. Both groups of students (those who like math and those who do not) dislike math class when they have to present work to classmates, but hold positive views of solving puzzles and working with other students. Technology seems to appeal equally to both groups. Students who reported disliking math also look forward to playing competitive games. We saw no evidence that gender or race corresponded to students’ level of appreciation math. Finally, students reported liking math class less in high school than in middle school. Identifying factors that influence secondary student mathematical dispositions can inform curriculum designers seeking to improve mathematical attitudes. Future studies can learn if new curricular designs can change student relationships with mathematics to reverse recent trends. 
    more » « less
  5. Why do secondary students in the US consistently and increasingly report a lack of interest in mathematics? Lack of interest in mathematics has been well documented in TIMSS responses; students dissatisfaction with mathematics more than doubled by 2011, when 40% of 8th graders reported not liking math, up from 18% as 4th graders in 2007. And, sadly, the trend appears to be worsening; in 2015, 47% of 8th graders indicated not liking math, up from 22% as 4th graders. In order to positively impact student attitudes towards mathematics, it is important to understand factors that may influence secondary students’ relationship with the discipline. This poster presents findings from an exploratory study of student disposition toward mathematics. We designed an online survey to learn about students’ relationship with mathematics, including experiences and settings that contribute to both positive and negative feelings about the subject. We surveyed 275 students, grades 9 to 12, in 11 classes in three schools in three New England districts. Though not randomly chosen, this sample allows us to examine student attitudes across a variety of contexts. We asked students about their feelings towards mathematics over the years, as well as which aspects of class they most enjoyed or disliked. Finally, we included items from the TRIPOD survey (Wallace et al., 2016) and the 2015 NAEP survey, which allows us to compare our sample with the national sample. Initial results indicate that student view their teachers and the topics of study as the central factors influencing their enjoyment of mathematics class. We found a correlation between responses that math is boring and that it is not relevant. Students who like math and those who do not reported different class activity preferences. For example, students who like math reported disliking watching a video in class, while students who dislike math reported disliking learning something new. Both groups of students (those who like math and those who do not) dislike math class when they have to present work to classmates, but hold positive views of solving puzzles and working with other students. Technology seems to appeal equally to both groups. Students who reported disliking math also look forward to playing competitive games. We saw no evidence that gender or race corresponded to students’ level of appreciation math. Finally, students reported liking math class less in high school than in middle school. Identifying factors that influence secondary student mathematical dispositions can inform curriculum designers seeking to improve mathematical attitudes. Future studies can learn if new curricular designs can change student relationships with mathematics to reverse recent trends. 
    more » « less
  6. Why do secondary students in the US consistently and increasingly report a lack of interest in mathematics? Lack of interest in mathematics has been well documented in TIMSS responses; students dissatisfaction with mathematics more than doubled by 2011, when 40% of 8th graders reported not liking math, up from 18% as 4th graders in 2007. And, sadly, the trend appears to be worsening; in 2015, 47% of 8th graders indicated not liking math, up from 22% as 4th graders. In order to positively impact student attitudes towards mathematics, it is important to understand factors that may influence secondary students’ relationship with the discipline. This poster presents findings from an exploratory study of student disposition toward mathematics. We designed an online survey to learn about students’ relationship with mathematics, including experiences and settings that contribute to both positive and negative feelings about the subject. We surveyed 275 students, grades 9 to 12, in 11 classes in three schools in three New England districts. Though not randomly chosen, this sample allows us to examine student attitudes across a variety of contexts. We asked students about their feelings towards mathematics over the years, as well as which aspects of class they most enjoyed or disliked. Finally, we included items from the TRIPOD survey (Wallace et al., 2016) and the 2015 NAEP survey, which allows us to compare our sample with the national sample. Initial results indicate that student view their teachers and the topics of study as the central factors influencing their enjoyment of mathematics class. We found a correlation between responses that math is boring and that it is not relevant. Students who like math and those who do not reported different class activity preferences. For example, students who like math reported disliking watching a video in class, while students who dislike math reported disliking learning something new. Both groups of students (those who like math and those who do not) dislike math class when they have to present work to classmates, but hold positive views of solving puzzles and working with other students. Technology seems to appeal equally to both groups. Students who reported disliking math also look forward to playing competitive games. We saw no evidence that gender or race corresponded to students’ level of appreciation math. Finally, students reported liking math class less in high school than in middle school. Identifying factors that influence secondary student mathematical dispositions can inform curriculum designers seeking to improve mathematical attitudes. Future studies can learn if new curricular designs can change student relationships with mathematics to reverse recent trends. 
    more » « less